Economic Analysis of Technological Processes

Lecture 6

Game Theory (28)- Game Applications (29)- Information Technology (35)- Asymmetric Information (37)

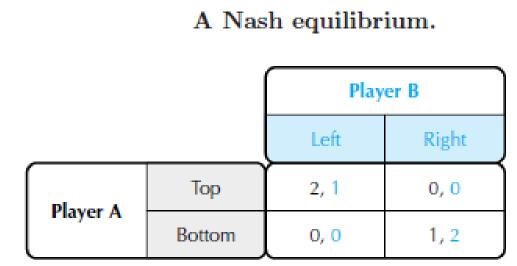
general analysis of strategic interaction

parlour games, political negotiation, and economic beaviour

The Payoff Matrix of a Game two-person games & finite number of strategies

dominant strategy independent

A payoff matrix of a game.


		Player B	
		Left	Right
Player A	Тор	1, 2	0, 1
	Bottom	2, 1	1, 0

Some parts used from ©McGraw-Hill E

Nash Equilibrium-dependent

generalization of the Cournot equilibrium

2 equilibria

Some parts used from ©McGraw-Hill Education. A

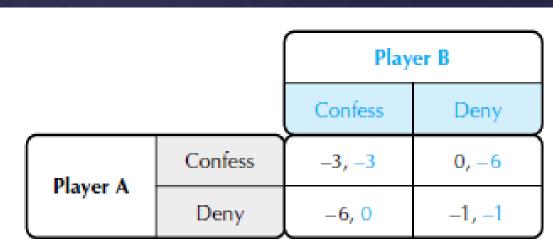
pure strategy

no Nash equilibrium

mixed strategy-random choices

Nash equilibrium in mixed strategies always exists

Some parts used from ©McGraw-Hill Educati


The Prisoner's Dilemma

Nash equilibrium does not necessarily lead to Pareto efficient outcomes

Confess or deny

(deny, deny) is Pareto efficient- but no way to coordinate

Cartel

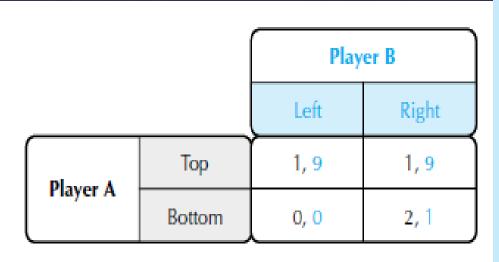
Some parts used from ©McGraw-Hill Educat

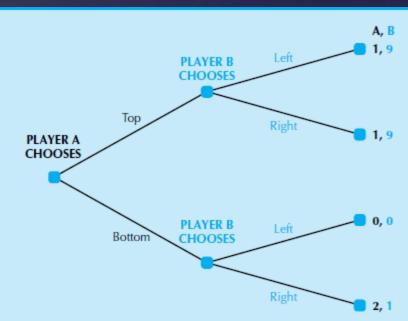
one-shot game or to be repeated

Repeated

to establish a reputation for cooperation

fixed number of times each player will defect on every round


or an indefinite


tit-for-tat

two Nash equilibria: (top, left) and (bottom, right)

extensive form

threat is credible?

cooperation, competition, coexistence, and commitment

Best response curves

$$c^* = b_c(r^*)$$
$$r^* = b_r(c^*)$$

The Cournot equilibrium each firm is choosing its profit-maximizing output, given the choice of the other firm

Some parts used from ©McGraw-Hill Education. All rights

Mixed Strategies

Combination Top, Left	Probability rc	Payoff to Row
Bottom, Left	(1-r)c	0
Top, Right Bottom, Right	r(1-c) $(1-r)(1-c)$	0 1

Games of Coordination battle of the sexes: movies focal point

Prisoner's Dilemma no easy way: contracts

Assurance Games: to move first, by opening itself to inspection

		U.S.S.R.	
		Refrain	Build
U.S.	Refrain	4, 4	1, 3
	Build	3, 1	2, 2

Some parts used from ©McGraw-Hill Education. All rights reser

Lecture 5: Monopoly behaviour

some degree of monopoly power

more complicated pricing and marketing strategies

Price Discrimination

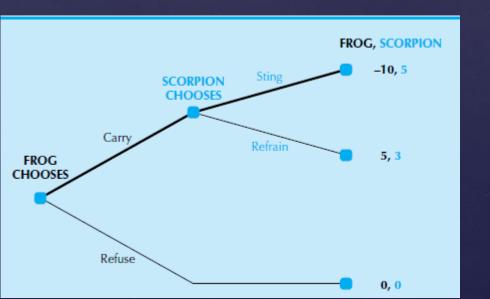
sell different units of output at different prices

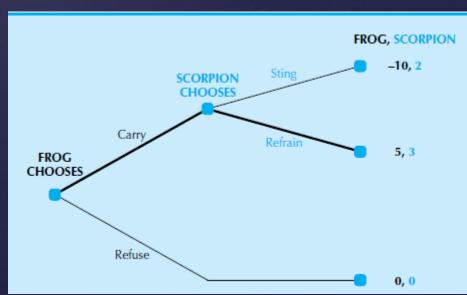
First-degree: different prices from person to person

perfect price discrimination

<u>Second-degree</u>: prices differ across the units of the good, but not across people= bulk discount

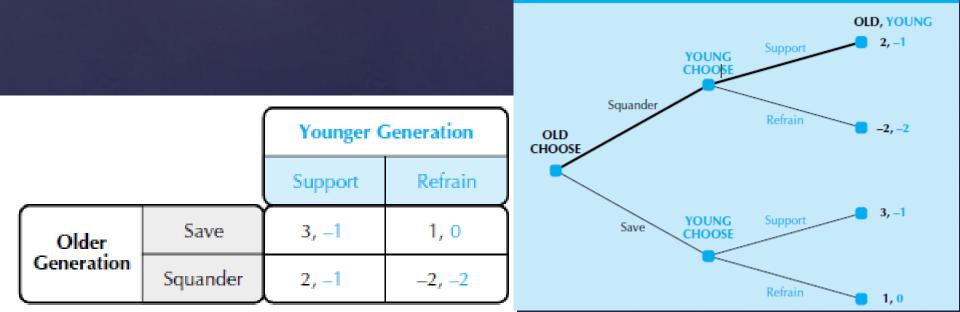
<u>Third-degree</u>: to different people for different prices e.g. Senior tickets


Chicken


automobile game

two pure strategy Nash equilibria

Games of Competition zero-sum games


Games of Commitment: sequential moves

Savings and Social Security contracts

Bargaining
Alice and Bob, have \$1 to divide between them

